
When Reasoning Meets Its Laws

Junyu Zhang 1∗‡ Yifan Sun 1∗ Tianang Leng 3∗ Jingyan Shen 4∗

Liu Ziyin 25† Paul Pu Liang 2† Huan Zhang 1†

1University of Illinois Urbana-Champaign 2Massachusetts Institute of Technology
3University of Pennsylvania 4New York University 5NTT Research

Abstract

Despite the superior performance of Large Reasoning Models (LRMs), their rea-
soning behaviors are often counterintuitive, leading to suboptimal reasoning ca-
pabilities. To theoretically formalize the desired reasoning behaviors, this paper
presents the Laws of Reasoning (LORE), a unified framework that characterizes
intrinsic reasoning patterns in LRMs. We first propose compute law with the
hypothesis that the reasoning compute should scale linearly with question com-
plexity. Beyond compute, we extend LORE with a supplementary accuracy law.
Since the question complexity is difficult to quantify in practice, we examine these
hypotheses by two properties of the laws, monotonicity and compositionality. We
therefore introduce LORE-BENCH, a benchmark that systematically measures
these two tractable properties for large reasoning models. Evaluation shows that
most reasoning models exhibit reasonable monotonicity but lack compositionality.
In response, we develop an effective finetuning approach that enforces compute-law
compositionality. Extensive empirical studies demonstrate that better compliance
with compute laws yields consistently improved reasoning performance on multiple
benchmarks, and uncovers synergistic effects across properties and laws. Project
page: https://lore-project.github.io/.

1 Introduction

Large Reasoning Models (LRMs) such as OpenAI o1 (Jaech et al., 2024) have demonstrated unprece-
dented progress in approaching human-like reasoning capabilities. Despite their strong performance
on solving complex problems, even powerful LRMs exhibit abnormal behaviors that deviate from
typical human reasoning patterns. Human generally adapt their thinking based on problem complex-
ity (Newell et al., 1972). In contrast, as illustrated in Fig. 1, DeepSeek-R1 (Guo et al., 2025) tends to
generate longer reasoning but with a lower accuracy on a simpler sub-problem1.

We also identify this unexpected phenomenon across a wide range of reasoning models, as shown
in Fig. 5. This is primarily because researchers generally overlook the high variability of Chain-of-
Thought (CoT) (Wei et al., 2022) data during the training phase. These CoT data are heuristically
curated by human annotators or generated through online rollout (Schulman et al., 2017; Shao
et al., 2024), rarely constrained by explicit rules, e.g., how much thinking budget to allocate for
a given problem (Wu et al., 2025). Hence, the current training paradigm fails to guide models
toward an optimal thinking strategy. It will lead to inefficient allocation of computation—either
overthinking (Chen et al., 2024b; Sui et al., 2025) or underthinking (Su et al., 2025; Yang et al., 2025;
Wang et al., 2025), which in turn harms the performance (Stechly et al., 2024; Zhou et al., 2025a).

∗Equal contribution. †Equal mentorship. ‡Work partially done during the internship at MIT.
Correspondence to: junyuz6@illinois.edu, ppliang@mit.edu, huan@huan-zhang.com.

1For each problem, we generated multiple samples to account for randomness.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

lore-project.github.io
https://lore-project.github.io/

Question 1

“Compute the sum
of 1 through 10.”

Answer of Question 1

tokens525

“Square the
number 55 .”

Question 2 Question 1+2

“Compute the sum of 1 through 10,

then square that sum.”

Reasoning

tokens1197

Reasoning

Evaluation Evaluation

75%

Accuracy Accuracy

38%

Reasoning tokens

525 1197

Expected:

817Actual Reasoning:

Accuracy

50%

Expected: <38%
Actual Accuracy:

Figure 1: Illustrative example with DeepSeek-R1 on (a) a summation question, (b) a squaring
question, and (c) their composition (“sum, then square”). The model allocates ~300 more reasoning
tokens to solve the squaring question than to the composite question, with a 12.5% accuracy drop.
The mismatch with human reasoning reveals an abnormal reasoning pattern present in current LRMs.

To overcome this limitation, one line of work focuses on adaptive post-training techniques, including
supervised fine-tuning with variable-length CoT (Aggarwal & Welleck, 2025; Team et al., 2025).
Another line of work modulates reasoning at test time (Muennighoff et al., 2025; Fan et al., 2025;
Zhang et al., 2025b). While many attempts have been made to control reasoning, existing approaches
primarily rely on ad-hoc heuristics and still behave undesirably in our studies. Therefore, beyond
empirical methods, several key challenges remain: (Q1) Can we theoretically formalize model
reasoning to ensure desirable behavior? (Section 2) (Q2) How can we evaluate whether popular
LRMs follow these proposed principles? (Section 3) (Q3) Does enforcing these principles further
improve general reasoning capabilities? (Section 4, 5)

To fill this gap, we introduce the Laws of Reasoning (LORE), which systematically formalize the
relationship between complexity and model reasoning behaviors in LRMs. The LORE framework
comprises a core compute law and a complementary accuracy law. Given the practical challenges of
measuring these hypotheses, the two fundamental laws are approximated via two tractable properties
of optimal reasoning models, monotonicity and compositionality.

We then evaluate whether current LRMs follow the laws by developing LORE-BENCH, a comprehen-
sive benchmark that examines monotonicity and compositionality in LRMs. While LORE-MONO is
a curated benchmark across diverse domains for monotonicity, LORE-COMPO is constructed from
MATH500 (Lightman et al., 2023) to measure compositionality. Our evaluation shows that current
models exhibit reasonable monotonicity but lack compositionality, even for competitive baselines.

In response, we propose a simple yet effective fine-tuning approach to enforce the compute-law
compositionality. From validation experiments, we present three key insights: (1) the compositionality
of reasoning compute can be greatly improved with simple fine-tuning approach; (2) Enforcing
compositionality generally leads to better reasoning capability; (3) Synergistic effects emerge,
yielding broader improvements across different properties and laws.

2 The Laws of Reasoning

We introduce the Laws of Reasoning (LORE), a unified framework that formalizes the relationship
between question complexity and model reasoning behaviors. Specifically, we focus on two key
aspects, reasoning compute and accuracy, which are fundamental to understanding how models scale,
generalize, and allocate computation budget when solving complex problems. Section 2.1 formulates
the key concepts of reasoning. In Section 2.2, we present the central compute law, with a hypothesis
that the reasoning budget should scale proportionally with question complexity. In Section 2.3,
we introduce the complementary accuracy law, which posits that overall accuracy should decay
exponentially with increasing complexity. See Fig. 2 for an illustration of the overall framework.

2.1 Problem Formulation

Notation. Let x ∈ X ⊆ V∗ denote a question, where V∗ is the space of finite-length sequences over
a vocabulary V . Let Mθ ∈ M denote an autoregressive large reasoning model. LRMs adopts the
thinking-then-answering paradigm (Guo et al., 2025; Abdin et al., 2025; Comanici et al., 2025), where
the model Mθ first generates a reasoning chain r ∈ R ⊆ V∗ with probability pθ(r | x) and then an
answer y ∈ Y ⊆ V∗ with probability pθ(y | x, r). We assume a fixed decoding strategy by default

2

For independent questions,
Additive Compute

For independent questions,
Multiplicative Accuracy

Complexity

Compute

Compute Law

Accuracy

1

Accuracy Law

Complexity

Compute
Law

Accuracy
Law

Monotonicity
Property

Compositionality
Property

Complexity
Compute

Complexity
Accuracy

Figure 2: Overview of the LORE Framework. We present the compute law with the complementary
accuracy law. These laws posit that compute scales linearly and accuracy decays exponentially
with question complexity. Our framework approximates these laws using two properties: monotonicity
and compositionality. Specifically, for the compute law, monotonicity captures that more complex
questions require more compute, while compositionality indicates that for two independent questions,
the compute for their composition is the sum of solving each individually.

and denote the model’s output by o=(r, y) ∈ O ⊆ V∗. We define the composition of two questions
x1 and x2 as their concatenation with a connector prompt c ∈ V∗2, i.e., x1 ⊕ x2 = concat(x1, c, x2).
Definition 1 (Complexity). Let a unit-cost primitive step denote a single valid transition of a fixed
deterministic Turing machine (Turing et al., 1936), and let τ be any finite sequence of primitive steps
with length ℓ(τ) ∈ N. Let v(x, τ) ∈ {0, 1} be a binary verifier that accepts (x, τ) if and only if τ is a
valid solution sequence for x. The complexity of x ∈ X is

κ(x) ≜ min{ ℓ(τ) : v(x, τ) = 1 } ∈ N ∪ {∞},

with κ(x) =∞ if no valid solution sequence exists.

Here the complexity refers to the minimal number of unit-cost primitive steps. Conceptually, κ(x) can
be well-defined via a binary verifier and a fixed deterministic Turing machine. However, computing
κ(x) is generally intractable, as verifying the minimal solution length requires a global search over a
potentially exponential space.

For a given model, its test-time reasoning compute is directly proportional to the number of reasoning
tokens generated. We therefore quantify reasoning compute as follows.
Definition 2 (Reasoning Compute). The reasoning compute on question x is defined as the expected
number of reasoning tokens generated by the model

Cθ(x) ≜ Er∼pθ(·|x)[ℓ(r)],

where ℓ(r) denotes the length (in tokens) of the reasoning chain r.
Definition 3 (Reasoning Accuracy). The reasoning accuracy is defined as the probability that the
model, when generating a reasoning chain and an answer given input x, produces a final answer that
matches the ground truth. Formally,

Aθ(x) ≜ E(r,y)∼pθ(·|x) [1 {ans(y) = a⋆(x)}] ∈ [0, 1].

where a⋆(x) denotes the correct answer to x, and ans(y) extracts the final answer from y.

2.2 Compute Law

We hypothesize that, if a reasoning model allocates its reasoning compute efficiently, the amount of
compute is expected to scale proportionally with complexity in approximation, i.e., Cθ(x) ∝ κ(x):
Hypothesis 1 (Compute Law). ComputeLaw For an optimal reasoning model Mθ and a question x
with complexity κ(x), there exist αθ > 0 with,

Cθ(x) = αθ κ(x) + o(κ(x)),

for some αθ > 0 that depends only on Mθ and the decoding strategy. o(κ(x)) denotes a small
systematic overhead that is sublinear, i.e., o(κ)/κ→ 0 when κ→∞.

2One example of c can be “Answer the following questions in order: Q1. {Q1}\nQ2. {Q2}”.

3

Specifically, the o(κ(x)) term captures the introductory and transition tokens during the reasoning
process. These tokens generally constitute a very small portion of the overall reasoning and can
therefore be ignored in practice.

Two Tractable Alternative Properties as Proxies. As discussed in Definition 1, the complexity
κ(x) is difficult to measure in practice. Consequently, empirically validating the linear relationship
is nontrivial, as it would require known complexity values for individual questions. To address
this, we adopt two tractable properties as empirical proxies for studying the laws: monotonicity
and compositionality. These properties offer two key advantages: (i) they are tractable to verify
without access to the exact value of κ(x). Monotonicity relies only on relative comparisons between
questions, while compositionality tests whether compute is additive over independent question pairs;
(ii) they are theoretically sufficient to imply the proposed compute law (Proposition 1).
Property 1 (Compute-Complexity Monotonicity). For x1, x2 ∈ X , the reasoning compute is
monotonically non-decreasing with complexity:

κ(x1) ≤ κ(x2) =⇒ Cθ(x1) ≤ Cθ(x2).

Definition 4 (Independence). For x1, x2 ∈ X , x1 and x2 are independent if the complexity of their
composition is additive, i.e., κ(x1 ⊕ x2) = κ(x1) + κ(x2).

In practice, since the exact complexity values are difficult to obtain, we define independence opera-
tionally. Suppose each question x ∈ X is associated with a set of mathematical concepts3 S(x) ⊆ S
relevant to solving it. We consider two questions x1 and x2 to be independent if their concept sets are
disjoint, i.e., S(x1) ∩ S(x2) = ∅.
Property 2 (Compute-Complexity Compositionality). For x1, x2 ∈ X , if x1 and x2 are independent,
their composite x1 ⊕ x2 exhibits additive compute:

Cθ(x1 ⊕ x2) = Cθ(x1) + Cθ(x2) + o(κ(x1) + κ(x2)),

where the sublinear terms accounts for systematic overhead in the reasoning process (as assumed in
Hypothesis 1). Therefore, the reasoning compute is approximately additive:

Cθ(x1 ⊕ x2) ≈ Cθ(x1) + Cθ(x2).

Discussion. Intuitively, these properties are motivated by two basic principles: (i) more complex ques-
tions naturally require more reasoning; (ii) Two independent sub-questions involve no overlapping
reasoning, so the total compute is the sum of solving each one individually. In the next proposition,
we state informally that these properties imply the compute law (Hypothesis 1); a formal proof is
provided in Appendix D. These tractable properties thus offer a practical means to evaluate whether
current LRMs follow the compute law.
Proposition 1. Under certain conditions, if a reasoning model Mθ satisfies compute-complexity
monotonicity and compositionality, then its reasoning compute Cθ(x) ∝ κ(x) for x ∈ X .

2.3 Beyond Compute: Accuracy Law

Following Definition 1, suppose a question requires solving κ(x) unit-cost primitive steps. If each
step succeeds independently with a fixed probability and all steps must succeed for the final answer to
be correct, then the overall accuracy is expected to decrease exponentially with κ(x). This intuition
motivates the following formulation of the accuracy law:
Hypothesis 2 (Accuracy Law). For an optimal reasoning model Mθ and a question x with complexity
κ(x), when 0 < Aθ(x) ≤ 1, there exists λθ ≥ 0 with,

Aθ(x) = exp
(
− λθ κ(x)

)
.

Equivalently, logAθ(x) ∝ −κ(x), where λθ ≥ 0 is the decay rate.

Similar to the compute law, we assume that the reasoning accuracy for the optimal reasoning model
Mθ also satisfies two fundamental properties: monotonicity and compositionality.

3For example, concepts may come from Calculus (e.g., derivatives), Algebra (e.g., group theory), or Discrete
mathematics (e.g., logic).

4

Seed question: Given integer N, update the initial matrix iteratively with the update rules …
Return as the final answer.

. . . Update

N = 1Variant 1:

Update

N = 2Variant 2: N = 30Variant 30:
Reasoning:

the number of update steps

UpdateUpdate

Figure 3: Question Generation of LORE-MONO. For each seed question, we generate 30 variants
with increasing complexity. Specifically, variant N applies the update rules N times to compute the
answer, so the question complexity increases monotonically with N .

Property 3 (Accuracy-Complexity Monotonicity). For x1, x2 ∈ X , the reasoning accuracy is
monotonically non-increasing with complexity:

κ(x1) ≤ κ(x2) =⇒ Aθ(x1) ≥ Aθ(x2).

Property 4 (Accuracy-Complexity Compositionality). For x1, x2 ∈ X , if x1 and x2 are independent,
their composite x1 ⊕ x2 exhibits multiplicative accuracy:

Aθ(x1 ⊕ x2) = Aθ(x1) ·Aθ(x2).

Discussion. These properties are motivated by two basic principles: (i) more complex questions tend
to have lower accuracy; (ii) for two independent questions with accuracies p1 and p2 (e.g., p1 = 0.8,
p2 = 0.7), the probability of correctly answering both should be p1 · p2 (e.g., 0.56). We state below
that these properties imply the accuracy law, with a formal proof provided in Appendix D.
Proposition 2. Under certain conditions, if a reasoning model Mθ satisfies accuracy-complexity
monotonicity and compositionality, then its reasoning accuracy logAθ(x) ∝ −κ(x) for x ∈ X .

3 Do Current LRMs Follow the Laws?

In this section, we systematically evaluate whether current LRMs follow our proposed reasoning
laws. Specifically, we introduce LORE-BENCH, a two-fold benchmark that leverages two tractable
properties, monotonicity and compositionality, to examine LRMs.

3.1 LoRe-Mono

Evaluating the monotonicity property in Property 1 or Property 3 requires comparing the complexity
of arbitrary question pairs. However, due to its definition via minimal solution length, complexity
is inherently difficult to quantify in practice. As a result, existing benchmarks are not suited for
such analysis. To address this challenge, we construct LORE-MONO, a synthetic benchmark where
questions are carefully curated and validated to follow known complexity orderings, allowing us to
systematically assess the monotonicity of reasoning compute and accuracy.

(1) Seed Question Curation. We select four domains that require extensive reasoning—math,
science, language, and code—and curate 10 diverse seed questions for each. A seed question defines
a problem template shared across its variants. (2) From Seed Questions to Variants. As shown in
Fig. 3, for each seed question, we create a series of variants (30 in total) that become increasingly
complex by requiring more steps to reach the final answer. For example, variant 1 requires one
matrix operation, variant 2 requires two, and variant 30 requires thirty, with the identical operation
applied repeatedly. By design, a larger number of steps directly corresponds to higher complexity.
(3) Program-based Generation and Manual Verification. All variants are generated through
Python scripts to ensure correctness and scalability. To prevent unintended shortcuts such as periodic
patterns, we manually verify each seed question and review sampled variants. We provide detailed
seed questions and variants for each domain in Appendix E.

We use the Spearman correlation coefficients ρ ∈ [−1, 1] to measure how the variant index, which
directly determines the constructed question’s complexity, relates to two quantities: reasoning
compute and log accuracy. A high correlation with reasoning compute indicates that compute grows
monotonically with complexity (Property 1), while a negative correlation with log accuracy indicates
that accuracy tends to degrade as complexity increases (Property 3).

5

3.2 LoRe-Compo

In contrast, assessing compositionality is more straightforward: it only requires taking any two
independent questions as sub-questions and constructing their composition. We build LORE-COMPO
from MATH500 (Lightman et al., 2023), where each question is labeled by subject (e.g., Algebra,
Geometry). Specifically, we randomly sample a pair of questions (x1, x2) from distinct pre-defined
subjects to ensure independence, and concatenate them into a composite question x12. Each original
question is used at most once, yielding 250 triplets, each with two sub-questions and their composition:
DLoRe-Compo = {(x(i)

1 , x
(i)
2 , x

(i)
12)}250i=1. Recall that for a function fθ(·) (either Cθ(·) or logAθ(·)),

compositionality implies that fθ(x12) ≈ fθ(x1) + fθ(x2). We therefore quantify the degree to which
a model follows this property using the mean absolute deviation (MAD):

MADf =
∑

(x1,x2,x12)∈DLoRe-Compo

∣∣fθ(x12)−
(
fθ(x1) + fθ(x2)

)∣∣
A smaller MAD indicates stronger adherence to the compositionality property. However, MAD is
scale-dependent. To address this, we adopt the Normalized MAD (nMAD):

nMADf =
MADf

Sf
, Sf =

∑
(x1,x2,x12)∈DLoRe-Compo

|fθ(x1) + fθ(x2)| .

3.3 Findings and Analysis

Evaluation Setups. We examine 6 LRMs on LORE-MONO and LORE-COMPO: four standard
models— DeepSeek-R1-Distill (Qwen-1.5B, Qwen-7B, Llama-8B) (Guo et al., 2025) and Phi-4-mini-
reasoning (Xu et al., 2025a)—and two models that apply reasoning length control, Thinkless-1.5B-
RL-DeepScaleR (Fang et al., 2025) and AdaptThink-7B-delta0.05 (Zhang et al., 2025a). For each
question, we sample 8 outputs per model with a fixed decoding temperature (0.6 for the DeepSeek
family and 0.8 for the Phi-4 family from their technical reports) and a maximum length of 20480
tokens. For LORE-MONO, at each variant index we first average reasoning compute4 and log accuracy
across the 40 questions, and then compute the Spearman correlation.

Table 1: Monotonicity Results on LORE-MONO. We examine whether reasoning compute and
log accuracy of 6 popular LRMs satisfy the monotonicity property across four domains. Spearman
correlations are reported for reasoning compute and log accuracy. Lang. stands for Language.

Size Models
Reasoning Compute ↑ Log Accuracy ↓

Math Science Lang. Code All Math Science Lang. Code All

1.5B DeepSeek-R1-1.5B 0.861 0.910 -0.346 0.151 0.875 -0.795 -0.864 -0.210 -0.487 -0.868
Thinkless-1.5B 0.943 0.961 0.648 0.794 0.976 -0.951 -0.934 -0.556 -0.539 -0.960

3.8B Phi-4-mini 0.980 0.973 0.936 0.922 0.988 -0.965 -0.802 -0.911 -0.822 -0.954

7B DeepSeek-R1-7B 0.956 0.975 0.901 0.970 0.991 -0.946 -0.876 -0.899 -0.818 -0.978
AdaptThink-7B 0.984 0.995 0.950 0.984 0.995 -0.963 -0.949 -0.904 -0.888 -0.972

8B DeepSeek-R1-8B 0.982 0.962 0.864 0.963 0.988 -0.944 -0.796 -0.924 -0.843 -0.947

𝐶 !
(𝑥
)

𝐿𝑜𝑔(𝐴
! (𝑥))

Figure 4: Visualizations of Monotonicity Results on DeepSeek-R1-1.5B. For each domain, we
plot reasoning compute and log accuracy as a function of variant index. The curves report the mean
accuracy across 10 questions series, and the shaded regions denote the standard deviation.

4We apply max–min normalization to the reasoning compute of each question to prevent any single item
from dominating the results.

6

Table 2: Compositionality Results on LORE-
COMPO. We calculate nMAD for reasoning
compute (Cθ) and log accuracy (logAθ).

Models nMADCθ ↓ nMADlogAθ ↓
DeepSeek-R1-1.5B 0.528 2.368

Thinkless-1.5B 0.339 0.694
Phi-4-mini 0.322 0.732

DeepSeek-R1-7B 0.337 1.170
AdaptThink-7B 0.327 0.791

DeepSeek-R1-8B 0.423 0.818

0 1 2
C (x1) + C (x2) ×104

0

1

2

C
(x

12
)

×104

nMAD = 0.528

DeepSeek-R1-1.5B

y = x

0 1 2
C (x1) + C (x2) ×104

0.0

0.5

1.0

1.5

2.0

C
(x

12
)

×104

nMAD = 0.423

DeepSeek-R1-8B

y = x

Figure 5: Visualizations of Compositional-
ity Results on Reasoning Compute. We plot
Cθ(x1⊕x2) against Cθ(x1)+Cθ(x2). Further
results are provided in Appendix E.4.

Current LRMs Largely Satisfy Monotonicity. On LORE-MONO, all LRMs exhibit a strong
positive correlation between reasoning compute and the variant index, which directly reflects question
complexity, with most overall Spearman correlations close to 1, as shown in Tab. 1. The only
exception is DeepSeek-R1-Distill-Qwen-1.5B, which has the weakest reasoning ability among the six
models and yields a lower overall correlation (0.875). As illustrated in Fig. 4, notably, in the language
domain its correlation between reasoning compute and complexity is negative (−0.346), while in the
code domain, it is near zero (0.151). This indicates that in some domains, the reasoning compute for
this model does not systematically increase with complexity, and may even decrease. We provide a
case study as additional analysis along with visualization results for other models in Appendix E.2.
Meanwhile, most LRMs exhibit a negative correlation between log accuracy and the variant index, as
expected. For DeepSeek-R1-Distill-Qwen-1.5B, however, this trend appears noticeably weaker.

Current LRMs Fail to Exhibit Compositionality. The nMAD is large for both reasoning compute
and log accuracy (Tab. 2), indicating that current LRMs do not satisfy compositionality. Fig. 5 further
plots Cθ(x1 ⊕ x2) against Cθ(x1) +Cθ(x2) for two representative LRMs. If an LRM adhered to the
compositionality law, most points would align closely with the y = x line. In practice, however, the
majority of points deviate substantially. Notably, even models equipped with reasoning length control
mechanisms (Thinkless-1.5B and AdaptThink-7B) exhibit considerable deviations, suggesting that
such techniques do not inherently promote compositional behavior.

4 Improving Reasoning via Enforcing Compositionality

In Section 3, we showed that while most LRMs generally satisfy monotonicity, they often fail to
satisfy compositionality. Based on Hypothesis 1, this observation motivates a natural question: can
enforcing compositionality lead to stronger reasoning capacity? In response, we propose a simple
yet effective supervised fine-tuning (SFT) method to promote compositional behavior in LRMs.
Importantly, we focus on enforcing compositionality specifically with respect to reasoning compute,
as it provides a more direct and actionable criterion for selecting supervision examples.5

Proposed Method: SFT-Compo Specifically, let Mθ be an LRM and Dtrain a training dataset.
Following the construction in Section 3.2, we select question pairs (x1, x2) ∈ Dtrain from distinct
categories and form composite questions x12 = x1 ⊕ x2. For each triplet (x1, x2, x12), we sample
K model outputs o = (r, y) ∈ O from an LRM (either the current model Mθ or a stronger teacher
model) , where r ∈ R is a reasoning path and y ∈ Y is the corresponding final answer:

{o(k)1 = (r
(k)
1 , y

(k)
1)}Kk=1 for x1, {o(k)2 = (r

(k)
2 , y

(k)
2)}Kk=1 for x2, {o(k)12 = (r

(k)
12 , y

(k)
12)}Kk=1 for x12.

Since compositionality is defined over reasoning paths, among the K3 combinations (o1, o2, o12),
we consider only those where all three reasoning paths r1, r2, r12 lead to correct answers, and select
the combination that best satisfies the compositionality condition:

(r∗1 , r
∗
2 , r

∗
12) = argmin

r1,r2,r12

|ℓ(r1) + ℓ(r2)− ℓ(r12)|

s.t. r1, r2, r12 each yielding a correct final answer. (1)

5Accuracy compositionality is not easy to enforce directly, as it does not specify which reasoning path should
be selected for supervision.

7

Each triplet thus yields three supervised examples: (x1, o
∗
1), (x2, o

∗
2), and (x12, o

∗
12), where

o∗i = (r∗i , y
∗
i) with y∗i the final answer paired with r∗i in the sampled outputs. Ag-

gregating across all triplets, we construct the compositional supervision dataset Dcomp =
{(x1, o

∗
1), (x2, o

∗
2), (x12, o

∗
12) | (x1, x2) ∈ Dtrain} . We then perform SFT on Dcomp to encourage

Mθ to internalize compositional reasoning behavior.

5 Experiments

We now empirically evaluate SFT-Compo, addressing two research questions: (1) whether it effectively
enforces compositionality, and (2) whether it further improves the reasoning capacity of LRMs. We
also provide additional insightful findings in our analysis.

5.1 Experimental Setup

Model, Dataset and SFT Recipe. We evaluate three LRMs: DeepSeek-R1-Distill (Qwen-1.5B,
Qwen-7B, Llama-8B) (Guo et al., 2025). We construct a dataset of sub-question and composite-
question triplets using a subset of DeepScaler (Luo et al., 2025b). For each question (either sub-
question or composite), we use DeepSeek-R1-Distill-Qwen-14B as a stronger teacher model to
sample K = 8 model outputs. We then construct the compositionality-enforced dataset Dcomp as
described in Eqn. 1, which contains approximately 3.9K question-output pairs. We fine-tune each
LRM on Dcomp for 5 epochs using a batch size of 16. Additional implementation details are provided
in Appendix F.

Evaluation. To evaluate compositionality, we use LORE-COMPO. For general reasoning capacity,
we consider six benchmarks: GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023), AIME
2024, AIME 2025 (Mathematical Association of America, 2025), AMC 2023 (AI-MO, 2024), and
OlympiadBench (He et al., 2024). We set the maximum generation length to 10240 tokens.

5.2 Main Results

Base
SFT-Compo Base

SFT-Compo Base
SFT-Compo

0.528

0.314 0.337 0.317

0.423
0.328

1.5B 7B 8B

Base SFT-Compo

(a) nMADCθ on LORE-COMPO.

0 1 2
C (x1) + C (x2) ×104

0

1

2

C
(x

12
)

×104

nMAD = 0.528

DeepSeek-R1-1.5B

y = x

0 1 2
C (x1) + C (x2) ×104

0.0

0.5

1.0

1.5

2.0

C
(x

12
)

×104

nMAD = 0.314

SFT-Compo-1.5B (Ours)

y = x

(b) Visualizations of Reasoning Compute Compositionality.

Figure 6: Comparison of Reasoning Compute Compositionality on LORE-COMPO for Base and
SFT-Compo models. (a) SFT-Compo consistently achieves a lower nMADCθ

across 1.5B, 7B, and 8B
models compared to the base model. (b) We visualize Cθ(x1 ⊕ x2) against Cθ(x1) + Cθ(x2) for
1.5B models. SFT-Compo aligns more closely with the y=x line than the base model.

Does SFT-Compo Effectively Enforce Compositionality Compared to the Base Model? We
compare LRMs before and after SFT using the nMAD of reasoning compute on LORE-COMPO.
As shown in Fig. 6a, SFT-Compo consistently reduces nMAD compared to the base model. On the
1.5B model, SFT-Compo achieves a reduction from 0.528 to 0.314 (a 40.5% reduction), and on the
8B model, from 0.423 to 0.328 (a 22.5% reduction). We further visualize the results on the 1.5B
model in Fig. 6b, where SFT-Compo aligns much more closely with the y=x line. Therefore, the
compositionality of reasoning compute can be effectively enforced in a simple manner via SFT-Compo.

Does Enforcing Compositionality Lead to Stronger Reasoning Capabilities? As shown in Tab. 3,
SFT-Compo consistently improves performance across all six benchmarks and all three model sizes.
For instance, on the 8B model, it yields a notable gain of +5.0 in average Pass@1. To rule out the
possibility that performance gains stem solely from leveraging outputs generated by a stronger teacher

8

model, we introduce a control baseline, SFT, which constructs the training dataset by uniformly
sampling one correct reasoning path for each question in the triplet:

(r∗1 , r
∗
2 , r

∗
12) ∼ Unif ({(r1, r2, r12) | r1, r2, r12 each yield a correct final answer}) .

Notably, SFT-Compo outperforms SFT in all cases, showing that the gains are not just from distilling
a stronger model but from better compliance with compositionality. This supports our Hypoth-
esis 1—that stronger models better follow reasoning laws—and demonstrate that encouraging
compositionality further enhances the reasoning capabilities of LRMs.

Table 3: General Reasoning Evaluation Results. We evaluate Base (pre-SFT), SFT, and SFT-Compo
(Ours) on mathematical and science reasoning benchmarks. All numbers report Pass@1 accuracy (%)
computed over 8 sampled outputs. Pass@1 denotes the average across the six benchmarks. Numbers
in orange indicate improvements relative to the base model.

Base Model Method
MATH SCIENCE

Pass@1
AIME24 AIME25 AMC23 MATH500 GSM8K Olympiad

DeepSeek-R1-1.5B
Base 18.8 20.4 59.7 71.6 81.2 33.8 47.6
SFT 20.4+1.6 21.5+1.1 59.6-0.1 76.4+4.8 81.7+0.5 36.1+2.3 49.3+1.7

SFT-Compo (Ours) 26.2+7.4 21.7+1.3 65.0+5.3 77.6+6.0 85.1+3.9 38.7+4.9 52.4+4.8

DeepSeek-R1-7B
Base 36.3 27.5 79.0 86.8 91.0 48.1 61.5
SFT 40.0+3.7 32.5+5.0 80.4+1.4 88.0+1.2 91.6+0.6 48.4+0.3 63.5+2.0

SFT-Compo (Ours) 43.3+7.0 33.2+5.7 80.6+1.6 88.8+2.0 91.6+0.6 50.5+2.4 64.7+3.2

DeepSeek-R1-8B
Base 28.3 22.9 71.9 76.4 86.5 40.9 54.5
SFT 30.4+2.1 24.2+1.3 75.2+3.3 82.6+6.2 88.0+1.5 44.7+3.8 57.5+3.0

SFT-Compo (Ours) 31.3+3.0 29.2+6.3 76.9+5.0 83.0+6.6 89.5+3.0 46.8+5.9 59.5+5.0

5.3 Synergistic Effect Analysis

Enforcing Compositionality in Reasoning Compute Improves Its Monotonicity. Recall from
Section 3.3 that DeepSeek-R1-Distill-Qwen-1.5B initially exhibits relatively weak monotonicity in
reasoning compute. Fig. 7a shows SFT-Compo significantly improves this property, increasing the
overall Spearman correlation from 0.875 to 0.977. Specifically, in the code domain, it rises from
0.151 to 0.914. This indicates that enforcing compositionality can implicitly enhance monotonicity.

1 5 10 15 20 25 30
Variant Index

0.2

0.4

0.6

Re
as

on
in

g
Co

m
pu

te LoRe-Mono

1 5 10 15 20 25 30
Variant Index

0.0

0.2

0.4

0.6

0.8

Re
as

on
in

g
Co

m
pu

te LoRe-Mono-Code

SFT-Compo-1.5B DeepSeek-R1-1.5B

(a) Visualizations of monoticity results on LORE-MONO and
the code domain for 1.5B models.

Base
SFT-Compo Base

SFT-Compo Base
SFT-Compo

2.368

0.685

1.170
0.756 0.818 0.677

1.5B 7B 8B

Base SFT-Compo

(b) nMADlogAθ on LORE-COMPO.

Figure 7: Synergistic Effects Among Different Reasoning Properties and Laws. (a) Enforcing
compositionality in reasoning compute improves its monotonicity. (b) Enforcing compositionality in
reasoning compute also improves the compositionality of log accuracy, measured by nMADlogAθ

.

Enforcing Compositionality in Reasoning Compute Improves Compositionality in Accuracy.
Interestingly, though SFT-Compo is designed to enhance compositionality in reasoning compute, it
improves the compositionality of log accuracy. Fig. 7b shows that the nMAD of log accuracy drops
from 2.368 to 0.685 on the 1.5B model (a 71.1% reduction), and from 1.170 to 0.756 on the 7B
model (a 35.4% reduction). This suggests a possible interplay among different reasoning laws.

6 Related Work

LRMs have emerged as a family of foundation models (Wiggins & Tejani, 2022). Since the advent of
OpenAI o1 (Jaech et al., 2024), the “thinking-then-answering” paradigm has been widely adopted,

9

with notable follow-ups such as DeepSeek-R1 and Phi-4-Reasoning (Abdin et al., 2024; Guo et al.,
2025; Qwen Team, 2025). Our framework builds upon the contemporary paradigm of adaptive
reasoning, wherein the model’s reasoning budget is dynamically controlled either through post-
training interventions (Luo et al., 2025a; Zhou et al., 2025b) or at test time (Muennighoff et al., 2025;
Xu et al., 2025b; Zhang et al., 2025b). Specifically, one line of work explores post-training techniques
that modulate when and how long a model should reason (Chen et al., 2024a; Yong et al., 2025),
while another frontier focuses on dynamically adjusting reasoning behavior during inference (Qiao
et al., 2025; Liu & Wang, 2025). Refer to Appendix B for additional related work.

7 Conclusions

As a comprehensive study from theoretical hypotheses to empirical validation, we advance a theoreti-
cal perspective grounded in human reasoning for improving reasoning in LRMs. We hope LORE can
inspire more potential strategies that guide models toward their optimal paradigms of thinking.

References
Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,

Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
report. arXiv preprint arXiv:2412.08905, 2024.

Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning
technical report. arXiv preprint arXiv:2504.21318, 2025.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv. org/abs/2503.04697, 2025.

AI-MO. AIMO Validation Dataset - AMC. https://huggingface.co/datasets/
AI-MO/aimo-validation-amc, 2024. URL https://huggingface.co/datasets/AI-MO/
aimo-validation-amc. Accessed: 2025-05-19.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI conference
on artificial intelligence, volume 38, pp. 17682–17690, 2024.

Qiguang Chen, Libo Qin, Jiaqi Wang, Jingxuan Zhou, and Wanxiang Che. Unlocking the capabilities
of thought: A reasoning boundary framework to quantify and optimize chain-of-thought. Advances
in Neural Information Processing Systems, 37:54872–54904, 2024a.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
o1-like llms. arXiv preprint arXiv:2412.21187, 2024b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Chongyu Fan, Yihua Zhang, Jinghan Jia, Alfred Hero, and Sijia Liu. Cyclicreflex: Improving large
reasoning models via cyclical reflection token scheduling. arXiv preprint arXiv:2506.11077, 2025.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. arXiv preprint
arXiv:2505.13379, 2025.

10

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
agi with olympiad-level bilingual multimodal scientific problems. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828–3850, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Junyan Li, Wenshuo Zhao, Yang Zhang, and Chuang Gan. Steering llm thinking with budget guidance.
arXiv preprint arXiv:2506.13752, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Wei Liu, Ruochen Zhou, Yiyun Deng, Yuzhen Huang, Junteng Liu, Yuntian Deng, Yizhe Zhang, and
Junxian He. Learn to reason efficiently with adaptive length-based reward shaping. arXiv preprint
arXiv:2505.15612, 2025.

Xin Liu and Lu Wang. Answer convergence as a signal for early stopping in reasoning. arXiv preprint
arXiv:2506.02536, 2025.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025a.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
o1-preview with a 1.5b model by scaling rl, 2025b. Notion Blog.

Mathematical Association of America. American Invitational Mathematics Examination – AIME.
American Invitational Mathematics Examination – AIME 2025, February 2025. URL https://maa.
org/math-competitions/american-invitational-mathematics-examination-aime. Ac-
cessed: 2025-09-21.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Allen Newell, Herbert Alexander Simon, et al. Human problem solving, volume 104. Prentice-hall
Englewood Cliffs, NJ, 1972.

Ziqing Qiao, Yongheng Deng, Jiali Zeng, Dong Wang, Lai Wei, Fandong Meng, Jie Zhou, Ju Ren,
and Yaoxue Zhang. Concise: Confidence-guided compression in step-by-step efficient reasoning.
arXiv preprint arXiv:2505.04881, 2025.

Qwen Team. Preview of qwen qwen1.5-32b. https://qwenlm.github.io/blog/
qwq-32b-preview/, 2025. Accessed: 2025-03-20.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

11

https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness? an
analysis of cot in planning, 2024. URL https://arxiv. org/abs/2405.04776, 2024.

Jinyan Su, Jennifer Healey, Preslav Nakov, and Claire Cardie. Between underthinking and over-
thinking: An empirical study of reasoning length and correctness in llms. arXiv preprint
arXiv:2505.00127, 2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Na Zou, et al. Stop overthinking: A survey on efficient reasoning
for large language models. arXiv preprint arXiv:2503.16419, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, C Chen, C Li, C Xiao, C Du,
C Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms, 2025. URL https://arxiv.
org/abs/2501.12599, 2025.

Alan Mathison Turing et al. On computable numbers, with an application to the entscheidungsproblem.
J. of Math, 58(345-363):5, 1936.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
o1-like llms. arXiv preprint arXiv:2501.18585, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Walter F Wiggins and Ali S Tejani. On the opportunities and risks of foundation models for natural
language processing in radiology. Radiology: Artificial Intelligence, 4(4):e220119, 2022.

Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less:
Understanding chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Haoran Xu, Baolin Peng, Hany Awadalla, Dongdong Chen, Yen-Chun Chen, Mei Gao, Young Jin
Kim, Yunsheng Li, Liliang Ren, Yelong Shen, et al. Phi-4-mini-reasoning: Exploring the limits of
small reasoning language models in math. arXiv preprint arXiv:2504.21233, 2025a.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025b.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time
compute for llm reasoning. arXiv preprint arXiv:2502.18080, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

Xixian Yong, Xiao Zhou, Yingying Zhang, Jinlin Li, Yefeng Zheng, and Xian Wu. Think or not?
exploring thinking efficiency in large reasoning models via an information-theoretic lens. arXiv
preprint arXiv:2505.18237, 2025.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. arXiv preprint arXiv:2505.13417, 2025a.

Junyu Zhang, Runpei Dong, Han Wang, Xuying Ning, Haoran Geng, Peihao Li, Xialin He, Yutong
Bai, Jitendra Malik, Saurabh Gupta, and Huan Zhang. Alphaone: Reasoning models thinking slow
and fast at test time. arXiv preprint arXiv:2505.24863, 2025b.

Kaiwen Zhou, Chengzhi Liu, Xuandong Zhao, Shreedhar Jangam, Jayanth Srinivasa, Gaowen Liu,
Dawn Song, and Xin Eric Wang. The hidden risks of large reasoning models: A safety assessment
of r1. arXiv preprint arXiv:2502.12659, 2025a.

Zijian Zhou, Ao Qu, Zhaoxuan Wu, Sunghwan Kim, Alok Prakash, Daniela Rus, Jinhua Zhao, Bryan
Kian Hsiang Low, and Paul Pu Liang. Mem1: Learning to synergize memory and reasoning for
efficient long-horizon agents. arXiv preprint arXiv:2506.15841, 2025b.

12

A LLM Usage

LLMs were used solely for language polishing.

B Additional Related Work

Large Reasoning Models. Large Reasoning Models (LRMs) have emerged as a family of foun-
dation models (Wiggins & Tejani, 2022). Since the advent of OpenAI o1 (Jaech et al., 2024), this
“thinking-then-answering” paradigm has been widely adopted. Notably, o1-like Reasoning Mod-
els can solve increasingly complex reasoning problems through elaborate reasoning chains (Wei
et al., 2022; Yao et al., 2023; Besta et al., 2024). Numerous efforts replicating o1’s success include
DeepSeek-R1 and Phi-4-Reasoning (Abdin et al., 2024; Guo et al., 2025; Qwen Team, 2025). Despite
impressive progress, the internal mechanisms and behavioral patterns of reasoning in LRMs remain
underexplored. Shojaee et al. (2025) take a step in this direction by examining reasoning through the
lens of problem complexity, though their analysis is limited to a constrained puzzle-solving setting.

Reasoning Length Control. Our framework builds upon the contemporary paradigm of adaptive
reasoning, in which the reasoning budget of the model is controlled either during post-training (Luo
et al., 2025a; Zhou et al., 2025b) or at test time (Muennighoff et al., 2025; Xu et al., 2025b; Zhang
et al., 2025b). One line of work develops post-training techniques that modulate when and how
long a model should reason (Chen et al., 2024a; Yong et al., 2025). This is achieved through two
primary strategies: one involves supervised fine-tuning on variable-length CoT with concise yet
sufficient reasoning (Aggarwal & Welleck, 2025; Team et al., 2025); the other utilizes RL through
length penalty (Zhang et al., 2025a; Fang et al., 2025; Liu et al., 2025). Beyond these, another
frontier involves implementing dynamic control over reasoning during inference. For example, some
approaches allocate inference budget via confidence (Qiao et al., 2025; Liu & Wang, 2025), while
others employ a secondary controller to modulate (Li et al., 2025).

C Limitations and Future Work

We acknowledge several limitations. First, our LORE-MONO currently includes only 40 seed ques-
tions in total. Expanding its topic diversity and coverage is an important direction for future work.
Second, we operationalize independence through disjoint sets of mathematical concepts. Although
this proxy is not rigorous, it is motivated by the practical difficulty of formalizing independence
between questions in an actionable and general way. We leave more refined treatments of indepen-
dence to future work. Finally, due to budget constraints, we focus on strong open-source LRMs, as
evaluating closed-source models would require substantial additional cost.

D Proofs and Corollaries

We first restate Proposition 1 and Proposition 2 formally and provide a complete proof, along with
corresponding corollaries.
Proposition 1 (Formal Version). Fix a question space X , a complexity map κ : X → N ∪ {∞}, and
a reasoning compute map Cθ : X → R≥0. Let ⊕ be a binary composition operator. For m ≥ 3 and
jointly independent x1, . . . , xm, define x1 ⊕ · · · ⊕ xm by a fixed bracketing (e.g. right-associated).
Define

Xfin := {x ∈ X : κ(x) <∞}, K := κ(Xfin) ⊆ N.
All assumptions below are imposed on Xfin.

(A1) Monotonicity. If κ(x) ≤ κ(y) then Cθ(x) ≤ Cθ(y).

(A2) Additivity under composition of independent questions. If x, y are independent, then

κ(x⊕ y) = κ(x) + κ(y), Cθ(x⊕ y) = Cθ(x) + Cθ(y).

(A3) For every u ∈ K and every m ∈ N, there exist x1, . . . , xm ∈ Xfin such that

κ(xi) = u for all i, {x1, . . . , xm} is jointly independent.

13

Consequently, x1 ⊕ · · · ⊕ xm is valid and

κ(x1 ⊕ · · · ⊕ xm) = mu ∈ K, Cθ(x1 ⊕ · · · ⊕ xm) =

m∑
i=1

Cθ(xi).

Then there exists a constant αθ ≥ 0 such that

Cθ(x) = αθ κ(x) for all x ∈ Xfin.

Proof. Define an equivalence relation x ∼ y ⇐⇒ κ(x) = κ(y). By (A1), κ(x) ≤ κ(y) and
κ(y) ≤ κ(x) imply Cθ(x) ≤ Cθ(y) and Cθ(y) ≤ Cθ(x), hence Cθ(x) = Cθ(y) whenever x ∼ y.
Thus there is a well-defined f : K → R≥0 with f(n) = Cθ(x) for any x such that κ(x) = n.

Fix u ∈ K and m ∈ N. By (A3) choose jointly independent x1, . . . , xm with κ(xi) = u. By (A2)
and the fixed bracketing,

κ(x1 ⊕ · · · ⊕ xm) = mu, Cθ(x1 ⊕ · · · ⊕ xm) =

m∑
i=1

Cθ(xi) = mf(u),

so
f(mu) = mf(u) (∀u ∈ K, ∀m ∈ N).

If K = {0} then Cθ ≡ 0 and the claim holds with αθ = 0. Otherwise take u, v ∈ K with u, v > 0
and let ℓ = lcm(u, v). Then

f(ℓ) = f
(
u · ℓ

u

)
=

ℓ

u
f(u) and f(ℓ) = f

(
v · ℓ

v

)
=

ℓ

v
f(v),

hence f(u)/u = f(v)/v, independent of u, v. Write this common ratio as αθ ≥ 0. Therefore
f(n) = αθn for all n ∈ K, and Cθ(x) = f(κ(x)) = αθ κ(x) for all x ∈ Xfin.

Corollary D.1 (Asymptotic version with sublinear overhead). If the compositional compute holds up
to a sublinear overhead, i.e., for independent x, y,

Cθ(x⊕ y) = Cθ(x) + Cθ(y) + o(κ(x) + κ(y)) ,

and the same (A3) assumption holds, then the above proof yields

Cθ(x) = αθ κ(x) + o
(
κ(x)

)
(κ(x)→∞).

Proposition 2 (Formal Version). Let Xfin = {x ∈ X : κ(x) < ∞}. Assume the setting and
independence notion of Property 3, Property 4, and Assumption (A3). Then there exists λθ ≥ 0 such
that for all x ∈ Xfin with 0 < Aθ(x) ≤ 1,

Aθ(x) = exp
(
− λθ κ(x)

)
.

Proof. Define an equivalence relation x ∼ y iff κ(x) = κ(y). By (A1), if x ∼ y then both
κ(x) ≤ κ(y) and κ(y) ≤ κ(x) hold, hence Aθ(x) ≥ Aθ(y) and Aθ(y) ≥ Aθ(x), so Aθ(x) = Aθ(y).
Therefore there exists a well-defined map

f : K → (0, 1], f(n) := Aθ(x) for any x ∈ Xfin with κ(x) = n.

Let g : K → R≥0 be g(n) := − log f(n).

Fix u ∈ K and m ∈ N. By (A3), choose jointly independent x1, . . . , xm with κ(xi) = u. By (A2)
and the fixed bracketing,

κ(x1 ⊕ · · · ⊕ xm) = mu, Aθ(x1 ⊕ · · · ⊕ xm) =

m∏
i=1

Aθ(xi) =
(
f(u)

)m
.

Hence
g(mu) = − logAθ(x1 ⊕ · · · ⊕ xm) = mg(u) (∀u ∈ K, ∀m ∈ N). (2)

14

If K = {0} then Aθ ≡ 1 and the claim holds with λθ = 0. Otherwise, let u, v ∈ K with u, v > 0
and set ℓ = lcm(u, v). Applying Eqn. 2 twice gives

g(ℓ) = g
(
u · ℓ

u

)
=

ℓ

u
g(u) and g(ℓ) = g

(
v · ℓ

v

)
=

ℓ

v
g(v),

so g(u)/u = g(v)/v. This ratio is independent of u, v > 0 in K; denote it by λθ ≥ 0.

For any n ∈ K, if n = 0 then g(n) = 0 = λθn; if n > 0 pick any u ∈ K \ {0} and write
n = n

u u to get from Eqn. 2 that g(n) = n
ug(u) = λθn. Therefore g(n) = λθn for all n ∈ K, i.e.

f(n) = exp(−λθn), and for any x ∈ Xfin,

Aθ(x) = f
(
κ(x)

)
= exp

(
− λθ κ(x)

)
.

Corollary D.2 (Asymptotic version with sublinear coupling). If for independent x, y the multiplica-
tivity holds up to a sublinear deviation in the exponent,

logAθ(x⊕ y) = logAθ(x) + logAθ(y) + o
(
κ(x) + κ(y)

)
,

and (A3) holds, then

logAθ(x) = −λθ κ(x) + o
(
κ(x)

)
(κ(x)→∞),

equivalently Aθ(x) = exp
(
− λθκ(x) + o(κ(x))

)
.

E Additional Details and Results of LoRe-Bench

E.1 Additional Details of LoRe-Mono

E.1.1 Example seed questions of LoRe-Mono

Here we provide one representative seed question example for each domain.

Math - Example seed question

Given an integer n = {N}, consider the order-2 recurrence over integers modulo M with an
alternating update rule and a mild nonlinear term. You are given the initial values

x0 = x0, x1 = x1.

We update the sequence one step at a time. Let t = 1, 2, 3, . . . , n denote the update index,
where t = 1 is the update that produces x2 from (x1, x0). At each update t, compute xk+1

from (xk, xk−1) using the parity of t:
- Define the nonlinear map φ(z) = (z + 1)2. (You may reduce intermediate values modulo M
at any time.)
- Odd step (t odd):

xk+1 ≡ Axk +Bxk−1 + C φ(xk) (mod M).

- Even step (t even):

xk+1 ≡ Axk −Bxk−1 + C φ(xk−1) (mod M).

For clarity, the first two updates are:

t = 1 : x2 ≡ Ax1 +Bx0 + C φ(x1) (mod M),

t = 2 : x3 ≡ Ax2 −Bx1 + C φ(x1) (mod M).

Apply exactly n− 1 updates starting from x0, x1 to reach xn(n = n), and **return xn** as a
single non-negative integer in [0,M − 1].
Conventions: - All modular reductions are taken modulo M and return a non-negative remainder.
- The alternating rule depends on the **update index** t. - Output only the integer value of xn

(no extra text).

15

Code - Example seed question

You are given runnable Python 3.10 code. Execute it exactly as-is in a clean environment (no
extra imports). This is a Code Execution task: run the program, do not rewrite it. The loop
counter i is 0-based. Return only the value of ANSWER (no other text, no formatting).
Code:

N = {N}; s = {init_state!r}

def f(s, i):
if len(s) == 0:

return s
L = len(s); r = (i % L) + 1; s1 = s[r:] + s[:r]
trans = str.maketrans ({'a':'e','e':'i','i':'o','o':'u','u':'a'})
return s1.translate(trans)

for i in range(N):
s = f(s, i)

ANSWER = s

Science - Example seed question

You are modeling a **batch bioreactor** where an enzyme E converts substrate A to product
B, but each catalytic event requires a recyclable **cofactor token** C (e.g., NAD∗/NADH).
Let At, Bt, Ct be the nonnegative integer counts of A, B, and C **after** completing tick t.
You are given fixed initial counts and a regeneration period: - A0 = args.A0, B0 = args.B0,
C0 = args.C0 - Regeneration period k = k
For **each discrete tick** t = 1, 2, . . . , n (with n = {N}), apply the following **biochemical
rule order**:
1) **Reaction (consumes cofactor)** — if both substrate and cofactor are available: - If
At−1 > 0 **and** Ct−1 > 0, then one catalytic turnover occurs:

At = At−1 − 1, Bt = Bt−1 + 1, Ct = Ct−1 − 1.

- Otherwise, no reaction this tick:

At = At−1, Bt = Bt−1, Ct = Ct−1.

2) **Cofactor regeneration (post-reaction)** — models an external respiratory/oxidative cycle
returning the cofactor to its usable form at fixed intervals: - If t mod k = 0, then **after** the
reaction stage:

Ct ← Ct + 1.

All updates are integer and at most ±1 per tick (“min/+=1” granularity). **Output** the
product count Bn after completing exactly n = {N} ticks (i.e., after applying the regeneration
rule at tick n).

16

Language - Example seed question

You are given a letter maze and a number of moves n={N}. The maze is a rectangular grid of
letters G with h={H} rows and w={W} columns:

{grid_block}

Start at the cell (r0, c0) = ({R0}, {C0}). Build a string S as you move:
1) First, write down the starting letter G[r0][c0] into S. (This is done before any moves.)
2) Then repeat the following exactly n={step} times (t = 1..n):
• Let (r, c) be your current cell BEFORE moving, and let ch = G[r][c].
• Move one step based on ch (case-insensitive):
– If ch ∈ {a, e, i, o, u} (a vowel): move RIGHT → c ← (c + 1) mod {W}
– Otherwise (a consonant): move DOWN → r ← (r + 1) mod {H}
• After moving to the destination cell (r, c), append its letter G[r][c] to S.
• Now mutate the grid based on ch (the letter you moved FROM):
– If ch is a vowel: cyclically rotate COLUMN c upward by 1.
(Formally, for all i: G[i][c] ← old G[(i + 1) mod H][c].)
– Otherwise (ch is a consonant): cyclically rotate ROW r left by 1.
(Formally, for all j: G[r][j] ← old G[r][(j + 1) mod W].)

Important: The mutation happens AFTER appending G[r][c] to S, and it affects the grid used
for the NEXT iteration. Indices are 0-based and the maze wraps around like a torus.
Thus, after n moves, S has length n + 1 (because the starting letter was included).

Let k = {K}. Your task is to return the word W made by the LAST k letters of S (in order).
Output W as a plain string.

E.1.2 Potential Shortcut Failures

A basic requirement of LORE-MONO is that the complexity of question variants increases mono-
tonically with the variant index. However, certain seed questions may violate this requirement. For
instance, if answers follow a periodic pattern (e.g., when all even-indexed variants have the answer 1
and all odd-indexed variants have the answer 0), a model could exploit prior patterns to guess the
correct answer without performing the intended computation. To ensure benchmark reliability, we
manually reviewed all variants and excluded those exhibiting periodic answer patterns.

E.2 Additional Results of LoRe-Mono

E.2.1 Additional Visualization Results

Visualizations of monotonicity results for the remaining 5 LRMs are provided in Fig. 8.

17

AdaptThink-7B

DeepSeek-R1-Distill-Llama-8B

Phi-4-mini-reasoning

DeepSeek-R1-Distill-Qwen-7B

Thinkless-1.5B

𝐶 !
(𝑥
)

𝐿𝑜𝑔(𝐴
! (𝑥))

Figure 8: Visualizations of Monotonicity Results on remaining 5 LRMs.

E.2.2 "Fail to Think" Case Study

We observe that the weakest model, DeepSeek-R1-Distill-Qwen-1.5B, occasionally produces no
reasoning tokens on certain code questions. For example, on variant 1 of a seed code question, the
generated output is simply <think>\n</think>, corresponding to a reasoning length of 0.

"Fail to think" - Example model output

<think>\n</think>\n\n To solve this problem, we need to simulate the execution of a given
Python code and determine the final value assigned to the variable ‘ANSWER‘. The code
involves string manipulation and state transitions, which we will simulate step by step.\n\n###
Approach\n1. **Initialization**:\n - We start with ‘N = 1‘ iteration, ‘s = \"01938\"‘, and
a function ‘f‘ that processes the string ‘s‘.\n\n2. **Function Definition**:\n - The function
‘f‘ takes a string ‘s‘ and processes each character based on its position in the string. The
position determines whether the count of ’0’, ’1’, ’2’, or ’3’ is incremented modulo 5.\n\n3.
Processing Each Character:\n - For each character in ‘s‘, we count the occurrences of ’0’,
’1’, ’2’, and ’3’..... (omitted ...)

18

E.3 Additional Details of LoRe-Compo

For all composite questions, a fixed connector links the sub-questions, ensuring they are answered in
sequential order. An illustrative example is provided below.

Example composite question

Answer the following questions in order:
Q1. Jim and Martha are standing together at the corner of a rectangular field. Jim walks
diagonally across the field. Martha gets to the same location by walking along its length and
width. The field is 300 feet wide and 400 feet long. How many feet less than Martha does Jim
walk?
Q2. Find all values of x that satisfy the equation x =

√
11− 2x+ 4.

E.4 Additional Results of LoRe-Compo

Visualizations of compositionality results for the remaining 4 LRMs are provided in Fig. 9.

0.0 0.5 1.0 1.5 2.0
C (x1) + C (x2) ×104

0.0

0.5

1.0

1.5

2.0

C
(x

12
)

×104

nMAD = 0.339

Thinkless-1.5B
y = x

0 1 2
C (x1) + C (x2) ×104

0.0

0.5

1.0

1.5

2.0

2.5

C
(x

12
)

×104

nMAD = 0.322

Phi-4-mini
y = x

0 1 2
C (x1) + C (x2) ×104

0.0

0.5

1.0

1.5

2.0

2.5

C
(x

12
)

×104

nMAD = 0.337

DeepSeek-R1-7B
y = x

0.0 0.5 1.0 1.5
C (x1) + C (x2) ×104

0.0

0.5

1.0

1.5

C
(x

12
)

×104

nMAD = 0.327

AdaptThink-7B
y = x

Figure 9: Visualizations of Compositionality Results on Remaining 4 LRMs.

F Experimental Details and Additional Results

F.1 Implementation Details

Since DeepScaler does not come with predefined categories, we first annotate each question using
GPT-4.1-mini to assign it to one of the following categories: Algebra (Prealgebra), Counting &
Probability, Geometry, Number Theory, or Calculus (Precalculus). Based on these annotations, we
construct sub-question and composite-question triplets by pairing questions from different categories.

For SFT, we perform a grid search over learning rates in {1e-6, 5e-6, 5e-5}, using a batch size of 8,
gradient accumulation of 2, and a warmup ratio of 0.

F.2 Additional Experimental Results

In Fig. 10, we further compare the reasoning compute compositionality of DeepSeek-R1-Distill-
Qwen-7B and DeepSeek-R1-Distill-Llama-8B before and after SFT-Compo. With SFT-Compo, the
nMAD decreases, and the results align more closely with the y = x line compared to their base
counterparts.

19

0 1 2
C (x1) + C (x2) ×104

0.0

0.5

1.0

1.5

2.0

2.5

C
(x

12
)

×104

nMAD = 0.337

DeepSeek-R1-7B

y = x

0 1 2
C (x1) + C (x2) ×104

0.0

0.5

1.0

1.5

2.0

C
(x

12
)

×104

nMAD = 0.317

SFT-Compo-7B (Ours)

y = x

0 1 2 3
C (x1) + C (x2) ×104

0

1

2

3

C
(x

12
)

×104

nMAD = 0.423

DeepSeek-R1-8B

y = x

0 1 2
C (x1) + C (x2) ×104

0.0

0.5

1.0

1.5

2.0

C
(x

12
)

×104

nMAD = 0.328

SFT-Compo-8B (Ours)

y = x

Figure 10: Visualizations of Reasoning Compute Compositionality on DeepSeek-R1-Distill-
Qwen-7B and DeepSeek-R1-Distill-Llama-8B.

20

	Introduction
	The Laws of Reasoning
	Problem Formulation
	Compute Law
	Beyond Compute: Accuracy Law

	Do Current LRMs Follow the Laws?
	LoRe-Mono
	LoRe-Compo
	Findings and Analysis

	Improving Reasoning via Enforcing Compositionality
	Experiments
	Experimental Setup
	Main Results
	Synergistic Effect Analysis

	Related Work
	Conclusions
	LLM Usage
	Additional Related Work
	Limitations and Future Work
	Proofs and Corollaries
	Additional Details and Results of LoRe-Bench
	Additional Details of LoRe-Mono
	Example seed questions of LoRe-Mono
	Potential Shortcut Failures

	Additional Results of LoRe-Mono
	Additional Visualization Results
	"Fail to Think" Case Study

	Additional Details of LoRe-Compo
	Additional Results of LoRe-Compo

	Experimental Details and Additional Results
	Implementation Details
	Additional Experimental Results

